

Smart Electricity Grids Metrology

DC/DC Converters for MVDC grids

Bruno LEFEBVRE

16/05/2024

SuperGrid Institute: your partner for innovation

Developing key technologies for future electricity grids

Visit our website www.supergrid-institute.com

SuperGrid Institute:

- European leader in HVDC & MVDC technologies & services
- Private research & innovation company
- Pooling the expertise of industrialists and academics
- Equipped with state-of-the-art test platforms
- Member of:

patent applications

PhD students

international publications

nationalities

M€ of investment

collaborators

Our areas of expertise

Covering the full technological chain of future power grids

Supergrid Architecture & Systems

High Voltage Substation Equipment

Power Electronics & Converters

High Voltage Cable Systems

Power Storage & Balancing

Agenda

1- Medium voltage direct current (MVDC)

- Architecture & Concept
- Evolution

2- DC-DC converters

- Architecture & Components
- Topologies
- Case study

3- Conclusion

Agenda

1- Medium voltage direct current (MVDC)

- Architecture & Concept
- Evolution

2- DC-DC converters

- Architecture & Components
- Topologies
- Case study

3- Conclusion

MVDC systems

High Voltage Direct Current (HVDC)

- Economically viable solution for long-distance and submarine transmission of bulk power
- 1st commercial system in 1954 in Sweden

Medium voltage direct current (MVDC)

- Emerging technology in power distribution and collection systems
- Pilot projects in China and Europe for PV, wind and other applications

Scientific and technical community works on MVDC foundations

- CIGRE TB 793 "Medium voltage direct current (MVDC) grid feasibility study"
- **SuperGrid CIGRE TB 875 "Medium Voltage DC distribution systems"
 - CIRED TB "DC Networks on the distribution level New trend or Vision?"
 - IEEE Std 1709-2018 Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships
 - CIGRE WG A3.40 MVDC switchgear (ongoing)
 - CIGRE WG B1.82 MVDC cable systems (ongoing)
 - IET book "Medium Voltage DC System Architectures" edited by Brandon Grainger, Rik W. De Doncker

MVDC architecture

۸۲	AC	MVAC	AC
AC	network 1		network 2

AC phase-phase RMS (U _{AC})	DC pole-ground (U _{DC} /2)
10 kV	±10 kV
20 kV	±20 kV
33 kV	±33 kV

	AC	DC
Technological maturity	+++	$\Theta\Theta\Theta$
Size of installations	Θ	++
Efficiency	Θ	(+)
Controllability	Θ	++

P. Le Metayer, J. Paez et al. "Break-even distance for MVDC electricity networks according to power loss criteria" EPE 2021

Advantages

Concept of MVDC Grid

European electrical network

level until 2050

Agenda

1- Medium voltage direct current (MVDC)

- Architecture & Concept
- Evolution

2- DC-DC converters

- Architecture & Components
- Topologies
- Case study

3- Conclusion

Basic architecture of DC-DC converter

Families of components

Current driven Components

Line commutated converters (LCC)

Voltage source converters (VSC)

Technologies of components

Three main technologies on the market

	Silicon (Si) IGBT	Silicon Carbide (SiC) MOSFET	Gallium Nitride (GaN) MOSFET		
Maxi. Voltage	6500 V	3300 V	1200 V		
Maxi. switching Frequency	~ 3 kHz	~ 80 kHz	~ 1 MHz		
Cost	++	+++	+		
Typ. Applications	Automotive Power Conversion	Power Conversion	Automotive		
	1		l		
		(Power module)	GS66516B C9H8 (e4) (Discrete case)		

The switching cell

Source

connection of

- Basic structure of a power converter
 - Half-bridge structure
 - Switch + anti-parallel diode

Package 62mm x 106mm x 30mm

Monolithic component

Impact of medium frequency: compactness

Reduction of weight & size of passive components

Boucherot formula :

$$\frac{V}{n} = 4.44 \cdot f \cdot B_m \cdot S$$

- The higher the frequency, the lower the magnetic cross-section
- Example: transformer comparison 50Hz / 20 kHz

180 kVA 20 kHz

40 kgs

DC-DC Power converter topologies

DC-DC Power converter PSFB

Case study: linear PV Parc, OPHELIA project

COMMUNIQUE DE PRESSE

31 Aout 2023

Avec le projet OPHELIA, CNR et ses partenaires Nexans, Schneider Electric, SNCF et SuperGrid Institute innovent et lancent un démonstrateur d'ombrières solaires sur la ViaRhôna

Case: Linear Photovoltaic Power Plant

- Technical feasibility of the system
- Estimation of costs and key performance indicators
- Identification of technology locks
- Development of technology bricks and validation

DC-DC Converter implementation

OIL TANK

LV

inverter

1.2kV

250A 10kHz

- DC solid state transformer with similar implementation as its AC equivalent: oil immersion
 - Limits bulky MV connection number

-10kV 12.5A

Agenda

1- Medium voltage direct current (MVDC)

- Architecture & Concept
- Evolution

2- DC-DC converters

- Architecture & Components
- Topologies
- Case study

3- Conclusion

Conclusion

- Emerging technology
- Involves passive and active components
- SiC power module technology allows
 - Size & weight reduction
 - High efficiency
- Dedicated testing platform are needed

Power converters test benches

Medium Frequency
Transformer
Characterization

Semiconductor Device Characterization

Power Cycling Test Bench

Semiconductor reliability and robustness test benches

Thank you!

