

DC power quality standardization status

Sébastien GOURAUD and Xavier YANG 16th of May 2024

more than 250 research teachers

9 research centers Q in France and

44

abroad

more than 300 academic and industrial partnerships

11 petaflops of computing capacity

more than 70 testing platforms

2,178

400

R&D projects conducted in 2022

99% of operating budgets transition of energy systems

300 scientific papers

views

220 expert and senior researchers with a high level of expertise on a national or international scale

5 million

initiatives with schools/universities (forums and school visits)

45

17.6

Agenda

1. Standardization activities in IEC

2. 9kHz-150kHz Quasi-Peak data processing

Standardization activities in IEC

Focus on DC power quality topics

Power Quality in IEC technical committees

On-going work

TC8 – system aspects

System Committee LVDC

Group 9

Future work

Power Quality in TC8 Joint Working Group 9 with System Committee LVDC

Circulated to national committees in feb 2024

IEC TC8/JWG9: DTR 63282 ED2- LVDC systems - Assessment of standard voltages and power quality requirements (ed.2)

7 Guidance for voltages and power quality			ver quality in LVDC system
	7.1	Considerations for voltage	ges in distribution DC networks
	7.1.1	General	
	7.1.2	Factors considered	to define voltage values
	7.1.3	DC voltages	
	7.2	EMC, compatibility and t	esting of equipment
	7.3	Considerations for DC p	ower quality
	7.4	Measurement methods	
	7.4.1	General	
	7.4.2	DC system electric	value integration time
	7.4.3	Frequency ranges of	f ripple spectral analysis
	7.4.4	DC power quality m	easurement methods
	7.4.5	DC system electric	power measurements
	7.5	DC power quality standa	rdization framework
		- 48 -	IEC DTR 63282 © IEC 2

IEC DTR 63282 © IEC 202

n	nex C	(infor	mative)	Supply radius in DC distribution systems	40
n	nex D	(infor	mative)	Electric power and power quality computation in DC system	41
	D.1	DC I	mean an	nd RMS values of voltage or current	41
	D.2	Gen	eral elec	ctric power system: decomposition of a general electric load	41
	D.3	Com	putation	of electric powers and PQ indices	42
	D.3.	1	Comput	tation of electric values in time domain	42
	D.3.2	2	Comput	tation of electric values in frequency domain	43
	D.3.3	3	Total ha	armonic distortion $T_{\mbox{hd}}$ used in AC system	44
	D.3.4	4	The rela	ation of different electric powers	45
	D.4	Rep	resentat	ion of electric powers in AC system	46
	D.5	Rep	resentat	ion of electric powers in DC system	46
	D.6	Pow	er qualit	ty indices in DC system	47
200	D.6.	1	Genera	Γ	47
24	D.6.2	2	DC pea	k-peak ripples	47
	D.6.3	3	Ripple s	spectra	47
	D.6.4	4	DC RM	S ripple or ripple distortion	48
).7	Illus	tration e	example of distortion power in DC system	50
	8.0	Mair	conclu	sions on electric value computation in DC system	50
1).9	Nee	d of cha	racteristics of DC voltage	51

Compatibility Levels definition in SC77A/WG8

Compatibility levels are the first brick to define **emission** limits and **immunity** thresholds to achieve electromagnetic compatibility between devices

IEC SC77A/WG8: 2024-02-16, circulation of Questionnaire: Proposal regarding the definition of compatibility voltage levels for LVDC networks

- 1- What problems will be solved by developing compatibility levels for DC grids?
- 2- What are the failure mechanisms expected for DC equipment and DC systems?
- **3-** Do you have examples of electric parameters or immunity issues related to DC systems and equipment?
- **4-** What DC disturbance phenomena are encountered? Voltage variation, voltage sag, unbalance, frequency spectra, etc.?
- **5-** What type of DC networks shall be considered (e.g. inductive/capacitive, single polar/bi-polar, IT/TN, residential/commercial/industrial, public/private, voltage levels, total power, etc.)?
- **6-** Is there any other EMC phenomena or additional information related to DC grids you are willing to share?

Next stage: Analyse of feedbacks from NCs for further actions

CISPR 16 Quasi-Peak assessment

Data processing in 9kHz-150kHz of in-situ recordings

Data processing of data of the ASR building in Utrecht

About 2 hours of recordings

Processing of the voltage and currents with **Digital-CISPR** implementation to be in-line with IEC 61000-2-2 compatibility levels in AC grids between 9kHz and 150kHz (**Quasi-Peak** detector with 200Hz resolution), with a time-domain aggregation of 3s.

Processing done in Matlab with a script compliant with committee draft of IEC 61000-4-30 ed4 (not publicly available)

What is quasi-peak?

IEC 61000-2-2 (compatibility levels for **AC** grids in **residential** environment):

"The compatibility levels for voltage distortion in differential mode from 9 kHz to 150 kHz, given in 4.12.2 and 4.12.3, are related to disturbance levels between any phase conductor and the neutral conductor measured with a quasi-peak detector and with a bandwidth of 200 Hz in accordance with CISPR 16-1-1."

Quasi-peak detector is applied on each frequency bin with two time constants when the signal is rising or dropping:

- Fast when the level is rising
- Slow when the level is dropping

Table 3 – Compatibility levels for voltage distortion in differential mode from 9 kHz to 30 kHz^a

Frequency range	Compatibility levels
kHz	$dB(\mu V)$
9 to 30	129,5 to 122 ^b

- ^a For EMC coordination in the setting of emission limits for unsymmetrical voltage distortion, see 4.12.1.
- The level decreases linearly with the logarithm of the frequency in the range 9 kHz to 30 kHz.

Table 4 – Compatibility levels for voltage distortion in differential mode from 30 kHz to 150 kHz^a

Frequency range	Compatibility levels
kHz	dB(µV)
30 to 50 ^b	122 to 119 ^c
50 ^b to 150	113 to 89 ^c

- For EMC coordination in the setting of emission limits for unsymmetrical voltage distortion, see 4.12.1.
- At the transition frequency, the lower level applies.
- ^c The level decreases linearly with the logarithm of the frequency in the ranges 30 kHz to 50 kHz and 50 kHz to 150 kHz.

IVL « Integral Voltage Level » is defined in future **IEC 61000-6-3** as a way to assess broadband disturbance, it is similar to **THD** for a specific frequency band

1. Voltage supra-harmonics – time evolution – comparison with compatibility levels

The maximum peak exceed the levels of IEC 61000-2-2 (104dBµV, i.e. about 160mV @88.35 kHz), it could be related with the switching of the AC/DC converter

1. Current 1 (ACDC converter) supra-harmonics – time evolution

ACDC converter current

1. Current 2 (EVCS) supra-harmonics – time evolution

EVCS current

1. Current 3 (PV) supra-harmonics – quasi-peak spectrum

PV current

Error in the calculcations due to the clipping

